*

BREVET BLANC

Jeudi 25 Mars 2010

MATHEMATIQUES

Durée de l'épreuve: 2 heures

Ce sujet comporte 3 pages. Dès que le sujet lui est remis, le candidat doit s'assurer qu'il est complet.

L'usage de la calculatrice est autorisée ainsi que les instruments de dessin.

Activités numériques	12 points
Activités géométriques	12 points
Problème	12 points
Qualité de rédaction et présentation	4 points

I. Activités numériques (12 points)

Exercice n°1: (5 points)

1. Calculer
$$A = \frac{7}{2} - \frac{2}{5} \times \frac{7}{6}$$
. On donnera le résultat sous la forme de fraction irréductible. (1,5 pts)

2. Calculer B =
$$\frac{7 \times 10^{-2} \times 11 \times 10^{9}}{8 \times 10^{2}}$$
. On donnera l'écriture scientifique du résultat. (1,5 pts)

3. Soit C =
$$\sqrt{20} - 3\sqrt{125} + 2\sqrt{5} + 5\sqrt{45}$$
. Excrire C sous la forme $a\sqrt{5}$. (2 pts)

Exercice n°2: (3 points)

On considère l'expression littérale D = $(2x + 3)^2 - (x - 7)(2x + 3)$

3. Calculer D pour
$$x = \sqrt{2}$$
. On donnera la valeur exacte. (1 pts)

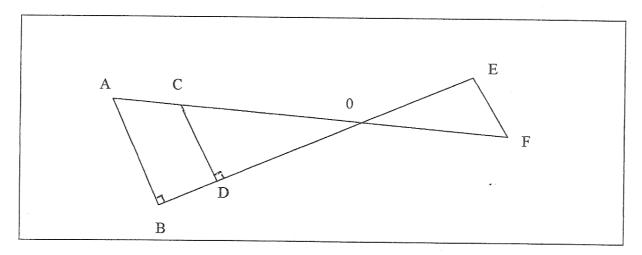
Exercice n°3: (4 points)

- 2. Marc a 108 billes rouges et 135 noires. Il veut faire des paquets de sorte que :
 - Tous les paquets contiennent le même nombre de billes rouges ;
 - Tous les paquets contiennent le même nombre de billes noires ; (2 pts)
 - Toutes les billes rouges et toutes les billes noires sont utilisées.

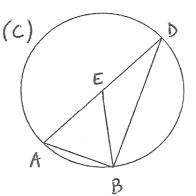
Quel nombre maximal de paquets pourra-t-il réaliser?

3. Combien y aura-t-il de billes rouges et de billes noires dans chaque paquet ? (1 pts)

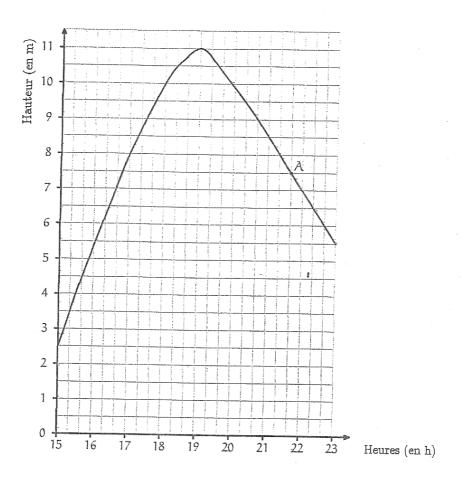
Activités géométriques


Exercice 1: (6 points)

Sur la figure ci-contre, qui n'est pas en vraie grandeur, nous savons que :


- (C) est un cercle de centre E dont le diamètre [AD] mesure 9 cm.
- B est un point du cercle (C) tel que : AEB = 46°.
- 1. Faire la figure en respectant les dimensions données. (1 pt)
- 2. Montrer que le triangle ABD est un triangle rectangle. (1,5 pt)
- 3. Justifier que : $\overrightarrow{ADB} = 23^{\circ}$. (1,5 pt)
- 4. Calculer la longueur AB et préciser sa valeur arrondie au centième de cm. (2 pts)

Sur la figure ci-dessous, OD = 4 cm; OC = 5 cm; AC = 3 cm; OE = 6 cm; OF = 7.5 cm; La représentation ci-dessous n'est pas en vraie grandeur.



- 1. Démontrer que (AB) et (CD) sont parallèles.
- 2. Calculer OB.
- 3. Démontrer que (EF) et (CD) sont parallèles.
- 4. Quelle est la nature du triangle OEF ? Justifier
- 5. Calculer au degré prés la mesure de l'angle OCD.
- 6. Quelle est la mesure au degré près de l'angle EFO ?

PROBLEME

Le graphique ci-dessous décrit les variations de la hauteur d'eau du port de Saint-Malo durant une période de 8 heures (de 15 h à 23 h).

Indication: En abscisses, 1 carreau représente 20 minutes.

Partie 1

Répondre aux questions à l'aide du graphique.

1/ Indiquer la hauteur d'eau à 15 h et à 22 h 20.

2/ Déterminer la hauteur maximum de l'eau et l'heure de la pleine mer.

3/ Entre quelles heures, le niveau de la mer est-il resté supérieur à 7 m ?

4/ Quelle information nous donne le point A?

Partie 2

On note f la fonction qui à une heure fait correspondre la hauteur d'eau dans le port de Saint-Malo . Le graphique précédent représente la fonction f pour x compris entre 15 et 23. Par lecture graphique, déterminer :

1/ une valeur approchée de l'image par la fonction f du nombre 16 ;

2/ une valeur approchée de f(15) et de f(23);

3/ une valeur approchée du ou des antécédents par la fonction f du nombre 8;

4/ le nombre x tel que x > 18 et f(x) = 8.5